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An analytic representation has been obtained for the conduction band and valence bands near k=0 for
GaSb. The periods of the magnetoresistance oscillations are calculated as functions of the Fermi energy for
the three magnetic field directions: (100), (110), and (111). The Fermi-level dependence and the anisotropy
of the periods are in excellent agreement with experiment. The beating effect due to the inversion asymmetry
splitting is estimated. The effective masses for the conduction, heavy-hole, light-hole, and split-off bands are
evaluated as functions of Fermi energy in the three major directions. The carrier-concentration dependence of
the effective mass is obtained for the conduction band. The calculated Fermi energy dependence and
anisotropy of the effective masses are compared with experiment,

I. INTRODUCTION

HE shape of the Fermi surface for n-type GaSb
has been intensively investigated since the
oscillations in the magnetoresistance (the Shubnikov—de
Haas effect) were first observed by Becker and Fan! for
this material. Yep and Becker? measured the periods
of oscillations in the Hall coefficient and magneto-
resistance for a number of samples with different Fermi
levels. Seiler and Becker? observed the beating patterns
in the Shubnikov—de Haas oscillations in GaSb which
are similar to those observed by Whitsett* in HgSe.
These patterns were interpreted as arising from the
inversion asymmetry splitting by Roth ef al.> More
recently, Seiler and Becker® measured the frequencies
of the Shubnikov—de Haas oscillations with the magnetic
field in a number of different directions and obtained a
remarkable anisotropy. They also estimated the
anisotropy in the conduction-band effective mass.

The dependence of the conduction-band effective
mass upon the carrier concentration has been investi-
gated for many III-V compounds. Palik and Wright?
provided a summary of a large number of experimental
results which show that the carrier-concentration
dependence of the effective mass in these materials is
quite significant. In InSb, for example, the value of the
effective mass measured for a sample with carrier
concentration ~10" cm™3 is about three times as large
as the corresponding value for a sample with carrier
concentration ~10% cm™2. For GaSb, Yep and Becker?
obtained the conduction-band effective masses for a

t Work supported by the U. S. Air Force Office of Scientific
Research under Grant No. AFOSR 68-1565.

* Present address: Department of Physics, University of
Texas, Austin, Tex. 78712,

1'W. M. Becker and H. Y. Fan, in Proceedings of the International
Conference on the Physics of Semiconductors, Paris, 1964 (Dunod
Cie., Paris, 1964), p. 663.

2T. O. Yep and W. M. Becker, Phys. Rev. 156, 939 (1967).

3 D. G. Seiler and W. M. Becker, Phys. Letters 264, 96 (1967).

4 C. R. Whitsett, Phys. Rev. 138, A829 (1965).

5 L. M. Roth, S.H. Groves, and P. W. Wyatt, Phys. Rev. Letters
19, 576 (1967); L. M. Roth, Phys. Rev. 173, 755 (1968).

6 D. G. Seiler and W. M. Becker, Phys. Rev. 183, 784 (1969).

7E. D. Palik and G. B. Wright, in Semiconductors and Semi-
metals, edited by R. K. Willardson and A. C. Beer (Academic
Press Inc., New York, 1967), Vol. 3, p. 421.

8T. 0. Yep and W. M. Becker, Phys. Rev. 144, 741 (1966).

set of samples with different degrees of carrier con-
centration by analyzing the measured Shubnikov-de
Haas oscillations. In addition to reporting their own
results, they provided a summary of the values obtained
by other investigators with different methods and
samples.

The Fermi surface and effective mass in p-type
GaSb, which correspond to the valence-band structure
of the material, has been less extensively investigated.
Stradling? measured the cyclotron-resonance effective
masses for the heavy-hole and light-hole bands for the
three major directions of magnetic field. He observed a
strong anisotropy in heavy-hole mass.

It is desirable to have a consistent theoretical
explanation for the experimental data with regard to
the Fermi surface and effective mass in doped GaSh.
Previously, most of the theoretical explanations have
been based on the k- p theory of Kane. Kotodziejczak
et al.,"* in particular, calculated the carrier-concentration
dependence of the effective masses for a large number
of III-V compounds using k-p theory and experi-
mentally obtained band parameters.

In the present paper, we report the result of an
analysis of the energy-band shape near k=0, which is
based on a previous band calculation for this material.!2
An analytic representation of the energy band near k=0
is obtained by expanding the energy in terms of Kubic
harmonics for each band and determining the coeffi-
cients using a least-squares procedure. The extremal
cross-sectional areas and their derivatives with regard
to the Fermi levels are evaluated in the three major
symmetry directions: (100), (110), and (111). This
gives the Fermi-level dependence and anisotropy of
the frequencies of Shubnikov—de Haas oscillations and
effective masses for the material. The carrier-concentra-
tion dependence of the effective mass is evaluated
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1 FERMI SURFACE AND EFFECTIVE MASS IN DOPED GaShb

explicitly for the conduction band. An estimate for the
distance between two successive nodes is made by
evaluating the difference between two extremal cross-
sectional areas split due to the inversion asymmetry.
Comparisons with the corresponding experimental
values are made for all the results if such are available.
The present work differs from most of the previous
theoretical investigations in that the present results
are obtained directly from the calculated energy bands,
while most of the previous calculations on this subject
were performed in k-p theory using some experi-
mentally obtained band parameters and thus not
related to any particular energy-band calculation.

II. ENERGY-BAND REPRESENTATION

In a previous work,'? we have determined a pseudo-
Hamiltonian and calculated the energy bands of GaSb,
which reproduced most of the important band char-
acteristics in a remarkable precision. From this calcula-
tion, we can obtain the energy levels for a given point
in the reciprocal space by diagonalizing the Hamiltonian
matrix. However, in order to determine the Fermi
surface and effective mass as functions of the Fermi
energy, it is necessary to obtain an analytical rep-
resentation of the energy band E (k) in the space of the
wave vector k.

An energy band E(k)_in k space possesses the point
group symmetry of the crystal and also the inversion

symmetry
E(k)=E(—k)

due to the time reversal symmetry of Hamiltonian.
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This is also true for the energy bands which are obtained
from a Hamiltonian including spin-orbit interaction.
Since an energy band is a scalar in k space, it possesses
I'; symmetry in cubic crystals. A nondegenerate band is
assumed to be analytic (regular) in k space throughout
the Brillouin zone' and therefore can be expanded in
terms of polynomials of k., k,, and k.. Using the
symmetry property of E(k), we can expand a non-
degenerate band in Kubic harmonics as

E(k)=Eot Ek*+ (Es DO+ E @K 4 1)k

+ (BsO+Ee®K s+ E¢®Ke, )k -+, (2.1)

where the Kubic harmonics K4,; and Kj,; are given by

5 (R 3
K4,1=;(21) (T—g), (2.2)
639630\ 12 a2k, h,?
e
32 kS
1 /kARS AR, 3 1
VT
22 k4 5 105

Callaway’ has used this expansion for the analysis of
the lithium band structure.

The valence bands, whichTare degenerate at k=0,
may not adequately be approximated by the above
expansion due to the nonanalyticity at the point of
degeneracy. Without spin-orbit coupling, the valence
bands near k=0 are determined by k-p perturbation
theory as solutions of the secular equation!®

Lk24+M (k2 +EkY)—E Nkky Nkzk,
Nkiky L2 M (k2+k?)—E Nkyk. =0. (2.4)
Nkoks Nkyk, Lk24M (ki+k2)—E
The quantities Z, M, and N are sums of certain matrix approximation of Kane' in the form
elements. It is obvious that the solution of (2.4), in _
general, may give rise to second-order anisotropic terms E(R)#=Eot (B, E, 0Tyl ETok®,  (2.5)
in k space. where
If we include the spin-orbit coupling effect, all the To= (1/k%) (R 2k 4k 2k 24k 2k 2) (2.6)
bands are regarded to be at least doubly degenerate at and
k=0 and along some symmetry axes. (For a crystal Ts= (1)) [k2(k 22+ by 2+ b 2k 2)
with inversion symmetry, however, we can ignore this ORI, (2.7)

double degeneracy because the degeneracy is not lifted
anywhere in the Brillouin zone.) Therefore, even the
conduction band and split-off valence band, which can
be regarded as nondegenerate if we neglect the inversion
asymmetry splitting, cannot adequately be represented
by (2.1).

On the other hand, the shape of the energy band
around k=0 can be analyzed by k-p perturbation
theory. For small k, the band, including spin-orbit
coupling effects, has been given by the three-band

In (2.5), the constant E,® vanishes for the conduction
and split-off bands. For the heavy-hole band, the term
containing T’ is absent. We here observe that the term
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3452 H. I.

containing T, represents the effect of the degeneracy
of valence bands and the term containing 7's represents
the splitting due to the lack of inversion symmetry.
Moreover, (2.5) implies that the splittings due to
the inversion asymmetry for the otherwise degenerate
bands are equal amount in the opposite directions.
Except for a few cases, such as beating effect in
Shubnikov—de Haas oscillations, the effect of the
inversion asymmetry splitting might be ignored. We
will, therefore, consider only the energy band averaged
over the two bands split due to inversion asymmetry.
The inversion asymmetry splitting and the correspond-
ing beating effect will be treated separately.

It is more convenient to express the factor T, given
in (2.6) in terms of the Kubic harmonics as

1 2
Ty=—- — ——K4 1. (2.8)

4,1

5 502112

We thus represent the band averaged over the two split
bands in the form

E(R)=E¢t (EsV+EPK 4 1)k (EsV+Es®K 4 1)k
+ (EsO+E®K, 1+ E¢® K1)k (2.9)

for the purpose of analyzing the Fermi surface and
effective mass associated with the I' point.
We represent the inversion asymmetry splitting
AE(k) by
AE(K)=E;T5k3, (2.10)

as given in (2.5). This form of the inversion asymmetry
splitting was first derived by Dresselhaus.!” It should be
possible to improve the representation of E(k) by
developing higher-order terms in k-p theory. These
would be especially desirable for the heavy-hole band
for which the representation (2.10) is not quite satisfac-
tory. It is found that this splitting in other bands is
reasonably well represented by (2.10). As a result, the
inversion asymmetry splitting for a band is represented
by a single parameter £s.

To determine the coefficients E,®, E,® B, E,®),
E¢®, E¢®, E¢®  and E; from the calculated energy

TasLE I. Coefficients of the energy expansion given by (2.9)
and (2.10). The values of k used in this expansion are 10X (a/2x)
times those of k in atomic units. The energy values in this expan-
sion are given in electron volts.

Conduction  Heavy-hole Light-hole Split-off
band band band band
E,® 1.0239620 0.0734897 0.9122749 0.2403520
E;® 0.0 0.0202314 —0.0247716 0.0
E,®  —1.1320772 0.0837259  —0.9878922 0.2908739
E® 0.0565828 0.0599069 0.0507158  —0.0545411
Es® 1.1072073  —0.2936364 0.5229867 —0.7823455
E¢®  —0.1134024 —0.2707260 0.0903271 0.2818397
E¢®  —0.0072275 —0.0262378 —0.0654968 —0.0407913
0.0023783 0.0900835 0.0398402

s 0.0469192

17 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
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bands near k=0, we have used a weighted least-squares
procedure. We calculated the energy levels at 21
different k points in the neighborhood of T' point by
the method described in Ref. 12. We then obtained
the levels averaged over the pairs of split bands for the
conduction, heavy-hole, light-hole, and split-off bands.
Using these values, we determined the coefficients in
(2.9) by a weighted least-squares procedure. The
weights in this least-squares procedure were provided in
such a way that the values

21

2 [Eo(k)) — E(k;) 1)/ [Eo(kj) ]*

J=1

should be minimized, where Eo(k;) and E(k;) are the
energy values obtained by the band calculation and by
the representation (2.9), respectively. The values for E;
are evaluated using a similar weighted least-squares fit
for the values of AE (k).

The determined coefficients of the representation
(2.9) and (2.10) are listed in Table I for all the bands
considered. The values of k used in the expansion (2.9)
and (2.10) are 10X (a¢/27) times those of k given in
atomic units (¢ being the lattice parameter in atomic
units). The values of the energy in these representations
are given in the unit of electron volts. To convert the
coefficients E, ¥, E,®, E,® etc., withn=2,3,4, ...,
into atomic units (both in energy and k vector), it is
necessary to multiply them by a factor «"/13.605,
where « is 10X (a¢/27)=18.333. The largest disagree-
ment between the energy values evaluated by (2.9)
and those obtained by the energy-band calculation is
about 0.05%, for the conduction band. Similar accuracy
was obtained for the representations of valence bands.

From this table, we observe that the inversion
asymmetry splittings are largest for the light-hole band,
relatively moderate for the conduction and split-off
bands, and least for the heavy-hole band. The single-
parameter representation of (2.10) for these splittings is
generally satisfactory (the largest disagreement being
about 109%,), except for the heavy-hole band whose
inversion asymmetry splitting vanishes according to
Kane’s k-p theory. The absolute magnitude of these
splitting for the heavy-hole band is so small that the
discrepancy in its representation is not significant. (For
the heavy-hole band, the coefficient Ej is obtained by
the ordinary least-squares procedure rather than the
weighted least-squares procedure.) In general, the
representations of the bands by (2.9) and (2.10) are
satisfactorily precise within a reasonable range of k
space around k=0. We make the analysis of the bands
using these representations in the following sections.

To the lowest order in the k- p analysis, the valence
bands can be represented by

E(k)= Ak B*+C*Ty Jk2, (2.11)

where -+ and — correspond to the heavy-hole and
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light-hole bands, respectively. The usual band-edge
parameters L, M, N, and also F, G, H, are related to
the parameters A, B, and C.*® From (2.9) and (2.11),
we obtain the relations

EyM=A+(B+C2/5)!2,
E,@=FC2/{5(21)2(B*4-C?/5)"2}
assuming
2C2K 4,1/ {5(21)"2(B24-C?/5) }1.
From these relations, we determined (in atomic units)
A=-—1218, |B|=9.00, |C|=11.49.

Alternatively, the values of 4, B, and C can be deter-
mined from (2.11) using a least-squares procedure;
indeed, it is found that the values determined by this
way converge to the above values as we take the
magnitude of k values smaller.

III. FERMI SURFACE AND INVERSION-
ASYMMETRY EFFECT

Many interesting magnetic effects occurring in z-type
doped GaSbh are due to the periodic changes in the
density of states of the conduction electrons as
the applied magnetic field is varied. The oscillations in
the magnetoresistance in this material are investigated
for the samples with various range of Fermi levels.!=3.
Similar oscillations in the Hall coefficient are also
observed for this material and it is found that the
periods of oscillations for these two effects are in very
close agreement with each other.2

The period P and the frequency F of this kind of
oscillation, which are induced by the magnetic quantiza-
tion of levels, is related to the extremal cross-sectional
area A of the Fermi surface perpendicular to the applied
magnetic field by

P=1/F="2re/hA (3.1)

in mks units. We can obtain the Fermi-level depend-
ence and anisotropy of the period of the oscillation by
evaluating the extremal cross-sectional areas as func-
tions of Fermi level in various directions.

The extremal cross-sectional area A (Er) is obtained

by

27
0

where kr(Ep,0) is the value of k vector on the Fermi
surface and the integral is performed on the surface
perpendicular to the applied magnetic field. In the
present investigation, we consider the cross-sectional
area associated with three major directions of symmetry
of magnetic field: (100), (110), and (111).

From (2.9), the Fermi level Ep is given by

Z=(14uK1,0)kp*+ (a+BK 4,1)kp*

+(’Y+5K4,1+€K6.1)]€F6, (3.3)
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where
Z=(Er—Eo)/Ex®,

B=FEi®/Ey® | y=F®/E,®
e=Ey® /By | p=FE,® /E,®.

a=E,W/E,®
d=FE¢® /E,®
Inverting (3.3), we obtain
1 a+BK 4,1
kF2=Z{ -7
14+pKs:  (14uKy)?
2(a+BKs1)?  y+8Ks1+eKeq
Z”[ - ] . (34
(I4+uKy,1)® (14+uKy1)*

Since u=0 for the conduction band, we can reduce it
to the form

ki?=F1(Z)+Fy(2)K 114 F5(Z) Ko+ Fi(Z)K 12, (3.5)

where
Fi(Z)=Z—aZ24 (2a2—7)Z3,
Fo(Z)= —B22+ (4af—8) 22,
F3(Z)=—eZ3,
Fu(Z)=2p275.
We then easily perform the integral in (3.2) on the
surfaces perpendicular to the (100), (110), and (111)
directions.

The calculated frequency versus Fermi energy curves
obtained from (3.2) and (3.1) are given in Fig. 1. In

50
/
/
p
,
/
/
//I
7
a0l 7
30f
)
n
(o]
20}
'S
L m>
<10>
Lot
— <100>
O-o 1 1 1 1 1 1
000 002 004 006 008 0.0 0.2
Ep(eV)

F16. 1. Frequency versus Fermi energy for conduction band.
The solid line represents the (100) direction and the dashed line
represents the (111) and (110) directions. The values of frequency
in the (111) and (110) directions are nearly identical and therefore
are not shown separately.
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TasLE II. A comparison between the calculated and measured
periods of the Hall coefficient and magnetoresistance oscillations.
P, represents the calculated periods, and Pr and P, represent
the measured periods of the Hall coefficient and magnetoresistance
oscillations, respectively. Ep is the Fermi energy of the measured
sample. The experimental data are taken from Ref. 2.

Experimental Calculated
Ep (eV) Pr (106G™) P, (1076 G P, (1078 G
(100) (110) (111)
0.1048 2.51 2.49 2493 2474 2470
0.0954 2.80 2.73 2.768 2.749 2.744
0.0937 2.83 ¥2.81 2.823 2.804 2.800
0.0907 2.94 2.89 2.927 2908 2.903
0.0895 2.99 2.93 2.970 2.951 2.947
0.0779 3.44 £3.42 3.457 3.438 3.434
0.0531 5.49 5.57 5.213 5.195 5.191
0.0484 6.09 5.98 5.748 5.731 5.727

Table II, we have made a comparison between the
calculated and measured periods of the Hall coefficient
and magnetoresistance oscillations for a number of
samples with different Fermi levels. The experimental
data listed in this table are obtained from Ref. 2. For
most of the samples, the calculated periods are in
excellent agreement with measured values.

Next, we present a comparison between the theory
and experiment for the anisotropy of the frequencies of
the magnetoresistance oscillations. In Table III, the
frequencies of the magnetoresistance oscillations mea-
sured by Seiler and Becker® with the magnetic field in
the (100), (110), and (111) directions are listed together
with the corresponding calculated values. Since the
Fermi levels of the samples used in these measurements
are not explicitly given by the authors, we made the
comparison with the calculated values which make
exact agreement with the experimental data in (111)
direction. By doing this, we can make the most clear
comparison for the anisotropy of the frequencies. The
Fermi levels, at which the calculated values were taken,
are also given in the table.

The result of the present calculation, which is
directly obtained from an energy-band calculation,
explains the measured angular variation very success-
fully. A similar result has been obtained by Seiler and
Becker,® who included only K4, type anisotropy. The
relative amount of contribution from Ks,; term is

TasLE III. Anisotropy of the frequencies of the magneto-
resistance oscillations. The experimental data are taken from
Ref. 6. The unit of the frequency is 105 G.

Fermi energy Direction Experimental®  Calculated
0.0956 (111) 3.649 3.649
{110y 3.643 3.643
{100) 3.617 3.617
0.1048 (111) 4.048 4.048
(110y 4.043 4.041
{100) 4.008 4.010

= Seiler remeasured these values recently and obtained slightly different
values [D. G. Seiler (private communication) ].
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small compared with that of K4,;. (See Table I for the
corresponding coefficients.)

We estimate the distance between two successive
nodes of the beat patterns caused by the inversion
asymmetry splitting in the extremal cross-sectional area
of the Fermi surface. In the present calculation, we
neglect the possible effects of the interaction between
the electronic spin and applied magnetic field.

For the case in which the magnetic field is in either
the (100) or (110) direction, some complication arises in
distinguishing the proper cross-sectional areas split
due to inversion asymmetry because the Fermi surfaces
for these two split levels touch each other in (100) and
(111) axes. Some detailed study has been made for
these complicated cases by Roth et al.5 We here con-
sider only the case in which the magnetic field is in a
(111) direction. In this case no such complication arises
because there are two unambiguously distinct cross-
sectional areas.

The difference between these two cross-sectional
areas is obtained by

27 27
AA(Z)= —2Z3/2/ WdB—{—SZ?/ wde
0 0
2T
1750 / (28UW —21W?)d6
0

27
+1023 / (WA—2UW?)do, (3.6)
0

where
U= a—l—,BK4,1 y

At the Fermi energy of experimental range,

W= (E3/E;™)Ts;.
the first

1
300f i 4300
i
H
H
H
i
4
Ny
- 3
T, 200F % 200
n .
.9 [
= (3
£
a £
4
100 oo
1 1 L 1 L 1
000 002 004 006 0.08 0.0 0.2 0.4
Ep (eV)

F16. 2. Distance and number of oscillations between two
successive nodes of beat pattern in Shubnikov-de Haas oscilla-
tions. Solid line represents the distance between two successive
nodes in the unit of 10-5 G andjthe dashed line represents the
number of oscillations between them.
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term and the third term in (3.6) contribute about 70
and 309, respectively. The contribution from the other
terms are order of 19). The integrands in (3.6) are
complicated functions of angle and therefore we
performed the integrals numerically. The calculated
distance and the number of oscillations between two
successive nodes are given in Fig. 2 as functions of
Fermi level.

The experimentally observed distance between two
successive nodes in the beat pattern reported by Seiler
and Becker is 11.7X107% G for the sample with the
estimated Fermi level 0.105 eV. From Fig. 2, we
observe that the corresponding theoretical value is
17.7X107% G Although the agreement is poor
quantitatively, it provides a strong evidence for the
fact that the beating effect is arising from the inversion
asymmetry splitting, as proposed by Roth et al.®
More intensive theoretical investigations including the
interaction between the electronic spin and external
magnetic field, as performed by Roth et al.5 for HgSe,
will be necessary to account for the beat patterns in
GaSb more satisfactorily. Roth’s calculation shows
that there is a serious departure from the classical
result due to the magnetic-breakdown effect.

IV. EFFECTIVE MASSES

The effective mass m* related to the cyclotron
resonance is given by

m*= (h2/2w)[dA(Er)/dEyr], (4.1)

where Ep is the Fermi energy and 4 (Er) is the extremal
cross-sectional area of the Fermi surface perpendicular
to the applied magnetic field. In atomic units, we

5.5F
<> <LI0>

50 <100>
>
S
L)
E
«
=}

4.5}

401

1

- I I 1 " I
0.00 -0.02 0.04 0.06. 0.08 0.I0 0.2 0.4
Eg (ev)

F1c. 3. Effective mass versus Fermi energy for conduction band.
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Fi16. 4. Effective mass versus Fermi energy for heavy-hole band.

rewrite it as

m*  1dA(Ep) 1

mo ™ dEF —21r 0

27 kF2(EF,6)

dEp

49, (4.2)

where m, is the electronic mass and kr(Ep,0) is the
value of k vector on the Fermi surface. We have already
expressed kp? in (3.4) in terms of Fermi energy and
Kubic harmonics. The integral in (4.2) can be evaluated
using kg? given in (3.5) for the conduction and split-off
bands using the condition u=0. For the heavy-hole
and light-hole bands, this condition is no longer true and
we have to evaluate the integral numerically. The cal-
culated effective-mass—versus-Fermi-energy curves are
given in Figs. 3-5 for the conduction, heavy-hole, and
light-hole bands. The values of the Fermi energy at
the minimum (or maximum) of the corresponding bands

102 (m'/m.)

L L L 1 i

000 0.02 0.04 0.06

Eg(eV)

008 0.0

F16. 5. Effective mass versus Fermi energy for light-hole band,
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are taken to be zero. The Fermi-energy values of the
valence bands are also taken to be positive.

To obtain the carrier-concentration dependence of
the effective mass, we need to find the carrier concentra-
tion as a function of Fermi energy. The carrier con-
centration occupying states near k=0 is given by

J.

For the conduction band, we can easily obtain the
expression kz® from (3.5) which contains only poly-
nomials up to second order of Kubic harmonics for the
angular part. Making use of the orthonomality of Kubic
harmonics, we can obtain the carrier concentration as a
function of Fermi level even without performing actual
integrations.

For the conduction band, as the Fermi level crosses
over the energy of L minima, the states near L points
begin to be occupied. We assume that the energy
surfaces in the vicinity of L points are ellipsoidal and
thus obtain an expression for the concentration of
carriers occupying the states near L minima:

1
dh=——
1273

o(Ep)= EptdQ.  (4.3)

(2m)?

4
pL(EF)= ;(EF—EL)met\/’WLl. (44)
™

Ep is the energy level at L point and #; and m, are
longitudinal and tangential effective mass associated
with L point. In our calculation, we have used the
results obtained in a previous work!® for these values.
The carrier concentration of electrons for the Fermi
energy higher than £y, is expressed as a sum of (4.3) and
(4.4).

\ The calculation of the carrier concentration for holes
is more complicated because of the term containing u.
Only a rough estimate is made for hole concentration as

a function of Fermi level for p-type GaSh.
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F16.76. Effective mass versus carrier concentration for conduc-
tion band. Dashed lines represent the case in which the effect of
L minima is neglected.

18 {. I. Zhang and J. Callaway, Solid State Commun. 6, 515
(1968).
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The calculated conduction-band effective mass as a
function of conduction-electron concentration is given
in Fig. 6.

The calculated cyclotron-resonance effective mass for
the conduction band makes a reasonable agreement with
experiment both in Fermi-energy dependence and
anisotropy. In Table IV, a comparison is made between
calculated and experimentally measured values of
conduction-band effective mass. The set of the experi-
mental values cited in this table is a collection of values
measured by a number of different investigators with
different methods. Therefore, it is not possible to
extract the precise Fermi-energy dependence of the
effective mass from these experimental data. In this
table, we present the values of effective mass calculated
in three different directions.

The calculated anisotropy of the conduction-band
effective mass is compared with a measurement by

Tasre IV. Comparison of calculated masses with experimentally
measured values for conduction band.

Effective mass (102 m*/mq)

Fermi
energy® Calc.

(eV) Expt. {100) 110y (111)
0.031 4.240.6° 4.218 4.235 4.239
0.035 3.940.4, 4.14:0.6> 4254 4.274 4.279
0.044 3.9£0.5> 4337 4364 4.371
0.046 4.940.5¢ 4.356 4.385 4.391
0.050 4.440.6, 4.340.3> 4394 4426 4.433
0.067 4.740.34 4.561 4.606 4.617
0.080 5.240.2¢ 4.694 4.750 4.763

a Values of Fermi energy are taken from Ref. 8.

b Reference 8.

o H, Piller, J. Chem. Phys. Solids 24, 425 (1963).

d S, Zwerdling, B. Lax, K. Button, and L. M. Roth, J. Phys. Chem.
Solids 9, 320 (1959).

e W. M. Becker, A. K. Ramdas, and H. Y. Fan, J. Appl. Phys. Suppl.
32, 2094 (1961).

Seiler and Becker® in Table V. Since the correlation
between the effective mass and Fermi energy is not
uniquely given in their experiment, we compare the
experimental values of effective mass with calculated
ones which would make exact agreement in (100)
directions. From this comparison, we find that the
agreement with experiment is reasonable for the
anisotropy of the conduction-band effective mass.

For the heavy-hole effective mass, we find only a
qualitative agreement with experiment. The absolute
values of the heavy-hole mass turned out to be signif-
icantly larger than the values measured by Stradling.?
However, a remarkable agreement is found in the
anisotropy. A comparison between calculated heavy-
hole mass (for the estimated hole concentration ~10'8
cm™?) and the experimental values of Stradling is given
in Table VI. Although both heavy-hole mass and
light-hole mass are sensitive to the Fermi level, they
are not very sensitive to the hole concentration due to
the large density of states in the valence bands. The
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TABLE V. Anisotropy of conduction-band effective mass. The
experimental values are taken from Ref. 6.

Experimental Calculated
Direction m*/mo in units of 102 m*/m in units of 102
{100) 4.66+0.08 4.660
(110 4.69+0.06 4.714
(111) 4.74+40.07 4.726

light-hole mass shows a stronger degree of anisotropy
than the conduction-band effective mass but not as
strong as that of the heavy-hole mass. The calculated
magnitude of the light-hole mass is found to be a little
smaller than the measured value 0.052m, of Stradling.®
Stradling did not observe any anisotropy of light-hole
mass in his measurements in three different directions,
but the calculated anisotropy is within the range of
uncertainty of his measurement.

The Fermi-energy dependence of the split-off band
effective mass does not have much physical significance
because it is very unlikely for a significant number of
holes to occupy states in this band to form a meaningful
Fermi level. (The Fermi level in this context is defined
only for the holes occupying this band.) Since the top
of this band locates at the level about 0.8 eV lower than
the top of other valence bands, the effective mass in
the split-off band is virtually independent of the hole
concentration. The calculated value of the split-off
band mass shows a slight anisotropy, and the magnitude
of this mass about 0.17m, coincides with the calculated

TasLE VI. Comparison of calculated heavy-hole masses with
experimental values. The experimental values are taken from
Ref. 9.

Experimental Calculated
Direction m*/mo m*/mo
(111) 0.36-0.03 0.606
(110) 0.36+0.03, 0.38-£0.03 0.598
(100) 0.26+0.04 0.435
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value for this by Higginbotham e/ al.'® There is no
available experimental information for the value of the
split-off band mass.

V. CONCLUSION

We have constructed a convenient and realistic
representation of energy band which is valid in a
substantial region of the Brillouin zone around k=0.
Many interesting physical effects in a semiconductor,
whose conduction-band minimum is located at k=0,
can be accounted for by the energy bands in this region.
Previously, only k- p perturbation theory supplied the
theoretical explanation for them, but because of the
absence of the higher-order terms than k2, the validity
of this theory is restricted. Our representation of the
energy band, which has wider validity than the k-p
representation, is directly related to our previous
energy-band calculation for GaSh.

A detailed analysis has been made for the Fermi
surface and effective mass of the conduction band using
this band representation. Most of the calculated results
agree with experiment quite satisfactorily. This gives
an additional justification for our previous band
calculation. More detailed study is desirable for the
explanation of the beating effect observed in GaSb
using our band representation. Some disagreement is
found between the calculated and measured effective
masses for the valence bands. More experimental and
theoretical investigations seem to be needed to obtain
clearer picture of the valence bands.
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